Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome dynamics of a desert poplar (Populus pruinosa) in response to continuous salinity stress.

Identifieur interne : 001F91 ( Main/Exploration ); précédent : 001F90; suivant : 001F92

Transcriptome dynamics of a desert poplar (Populus pruinosa) in response to continuous salinity stress.

Auteurs : Jian Zhang [République populaire de Chine] ; Dechun Jiang ; Bingbing Liu ; Wenchun Luo ; Jing Lu ; Tao Ma ; Dongshi Wan

Source :

RBID : pubmed:24913126

Descripteurs français

English descriptors

Abstract

KEY MESSAGE

Using RNA sequencing analysis, we identified 9,216 regulatory and salt-related genes with differential expression and temporal expression trends which provide a clear picture of transcriptomic dynamics in response to continuous salinity stress in a desert poplar, Populus pruinosa. Populus pruinosa Schrenk is native to the desert region of western China and extraordinarily well adapted to the local salt stress. Thus, it is an ideal model for studying plants' adaptation to salt stress, but its transcriptomic responses have not been previously characterized. Thus, we analyzed time- courses of these responses via a series of sequencings. In total, we generated 157.4 million 100 bp paired-end clean reads and identified 9,216 differentially expressed genes (DEGs) between salt-stressed calli and controls. Gene ontology classification analysis revealed that salt stress-related categories--including 'oxidation reduction', 'transcription factor activity', 'membrane' and 'ion channel activity'--were highly enriched among these DEGs. In addition, we grouped the 9,216 DEGs by their expression dynamics into four clusters, and the genes in each cluster showed enrichment for particular functional categories. We also found that most DEGs were activated within 24 h of the stress and their expression stabilized after 48 h. All these findings suggest that gene expression rapidly and coordinately changes during this species' adaptation to salt stress. In addition, the identified DEGs provide critical genetic resources for further functional analyses and indications of potential transgenic modifications for developing salt-tolerant poplars.


DOI: 10.1007/s00299-014-1638-z
PubMed: 24913126


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome dynamics of a desert poplar (Populus pruinosa) in response to continuous salinity stress.</title>
<author>
<name sortKey="Zhang, Jian" sort="Zhang, Jian" uniqKey="Zhang J" first="Jian" last="Zhang">Jian Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Dechun" sort="Jiang, Dechun" uniqKey="Jiang D" first="Dechun" last="Jiang">Dechun Jiang</name>
</author>
<author>
<name sortKey="Liu, Bingbing" sort="Liu, Bingbing" uniqKey="Liu B" first="Bingbing" last="Liu">Bingbing Liu</name>
</author>
<author>
<name sortKey="Luo, Wenchun" sort="Luo, Wenchun" uniqKey="Luo W" first="Wenchun" last="Luo">Wenchun Luo</name>
</author>
<author>
<name sortKey="Lu, Jing" sort="Lu, Jing" uniqKey="Lu J" first="Jing" last="Lu">Jing Lu</name>
</author>
<author>
<name sortKey="Ma, Tao" sort="Ma, Tao" uniqKey="Ma T" first="Tao" last="Ma">Tao Ma</name>
</author>
<author>
<name sortKey="Wan, Dongshi" sort="Wan, Dongshi" uniqKey="Wan D" first="Dongshi" last="Wan">Dongshi Wan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24913126</idno>
<idno type="pmid">24913126</idno>
<idno type="doi">10.1007/s00299-014-1638-z</idno>
<idno type="wicri:Area/Main/Corpus">002141</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002141</idno>
<idno type="wicri:Area/Main/Curation">002141</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002141</idno>
<idno type="wicri:Area/Main/Exploration">002141</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome dynamics of a desert poplar (Populus pruinosa) in response to continuous salinity stress.</title>
<author>
<name sortKey="Zhang, Jian" sort="Zhang, Jian" uniqKey="Zhang J" first="Jian" last="Zhang">Jian Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Dechun" sort="Jiang, Dechun" uniqKey="Jiang D" first="Dechun" last="Jiang">Dechun Jiang</name>
</author>
<author>
<name sortKey="Liu, Bingbing" sort="Liu, Bingbing" uniqKey="Liu B" first="Bingbing" last="Liu">Bingbing Liu</name>
</author>
<author>
<name sortKey="Luo, Wenchun" sort="Luo, Wenchun" uniqKey="Luo W" first="Wenchun" last="Luo">Wenchun Luo</name>
</author>
<author>
<name sortKey="Lu, Jing" sort="Lu, Jing" uniqKey="Lu J" first="Jing" last="Lu">Jing Lu</name>
</author>
<author>
<name sortKey="Ma, Tao" sort="Ma, Tao" uniqKey="Ma T" first="Tao" last="Ma">Tao Ma</name>
</author>
<author>
<name sortKey="Wan, Dongshi" sort="Wan, Dongshi" uniqKey="Wan D" first="Dongshi" last="Wan">Dongshi Wan</name>
</author>
</analytic>
<series>
<title level="j">Plant cell reports</title>
<idno type="eISSN">1432-203X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Salinity (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Sodium Chloride (metabolism)</term>
<term>Species Specificity (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Chlorure de sodium (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Salinité (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chlorure de sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Cluster Analysis</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Salinity</term>
<term>Sequence Analysis, DNA</term>
<term>Species Specificity</term>
<term>Stress, Physiological</term>
<term>Time Factors</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de regroupements</term>
<term>Analyse de séquence d'ADN</term>
<term>Facteurs temps</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Salinité</term>
<term>Spécificité d'espèce</term>
<term>Stress physiologique</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>Using RNA sequencing analysis, we identified 9,216 regulatory and salt-related genes with differential expression and temporal expression trends which provide a clear picture of transcriptomic dynamics in response to continuous salinity stress in a desert poplar, Populus pruinosa. Populus pruinosa Schrenk is native to the desert region of western China and extraordinarily well adapted to the local salt stress. Thus, it is an ideal model for studying plants' adaptation to salt stress, but its transcriptomic responses have not been previously characterized. Thus, we analyzed time- courses of these responses via a series of sequencings. In total, we generated 157.4 million 100 bp paired-end clean reads and identified 9,216 differentially expressed genes (DEGs) between salt-stressed calli and controls. Gene ontology classification analysis revealed that salt stress-related categories--including 'oxidation reduction', 'transcription factor activity', 'membrane' and 'ion channel activity'--were highly enriched among these DEGs. In addition, we grouped the 9,216 DEGs by their expression dynamics into four clusters, and the genes in each cluster showed enrichment for particular functional categories. We also found that most DEGs were activated within 24 h of the stress and their expression stabilized after 48 h. All these findings suggest that gene expression rapidly and coordinately changes during this species' adaptation to salt stress. In addition, the identified DEGs provide critical genetic resources for further functional analyses and indications of potential transgenic modifications for developing salt-tolerant poplars.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24913126</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-203X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2014</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant cell reports</Title>
<ISOAbbreviation>Plant Cell Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome dynamics of a desert poplar (Populus pruinosa) in response to continuous salinity stress.</ArticleTitle>
<Pagination>
<MedlinePgn>1565-79</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00299-014-1638-z</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="CONCLUSIONS">Using RNA sequencing analysis, we identified 9,216 regulatory and salt-related genes with differential expression and temporal expression trends which provide a clear picture of transcriptomic dynamics in response to continuous salinity stress in a desert poplar, Populus pruinosa. Populus pruinosa Schrenk is native to the desert region of western China and extraordinarily well adapted to the local salt stress. Thus, it is an ideal model for studying plants' adaptation to salt stress, but its transcriptomic responses have not been previously characterized. Thus, we analyzed time- courses of these responses via a series of sequencings. In total, we generated 157.4 million 100 bp paired-end clean reads and identified 9,216 differentially expressed genes (DEGs) between salt-stressed calli and controls. Gene ontology classification analysis revealed that salt stress-related categories--including 'oxidation reduction', 'transcription factor activity', 'membrane' and 'ion channel activity'--were highly enriched among these DEGs. In addition, we grouped the 9,216 DEGs by their expression dynamics into four clusters, and the genes in each cluster showed enrichment for particular functional categories. We also found that most DEGs were activated within 24 h of the stress and their expression stabilized after 48 h. All these findings suggest that gene expression rapidly and coordinately changes during this species' adaptation to salt stress. In addition, the identified DEGs provide critical genetic resources for further functional analyses and indications of potential transgenic modifications for developing salt-tolerant poplars.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Dechun</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Bingbing</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Wenchun</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Dongshi</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Plant Cell Rep</MedlineTA>
<NlmUniqueID>9880970</NlmUniqueID>
<ISSNLinking>0721-7714</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="Y">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="N">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24913126</ArticleId>
<ArticleId IdType="doi">10.1007/s00299-014-1638-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:651-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Apr;17(4):309-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11301299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D91-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):645-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):244-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 11;8(6):e66370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23776666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Oct;137(2):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19678897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2002 Feb;25(2):173-194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 Oct 29;218(4571):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17808529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jul 17;10:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Feb;6(2):66-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11173290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Dec;31(12):1335-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21911439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jul 1;22(13):1658-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D1114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23125362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Aug;8(8):1494-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23845962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Mar 01;14(3):4885-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23455464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Apr;31(4):452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jul;123(3):1047-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10889254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomic Proteomic. 2006 Feb;4(4):343-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17202125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D1123-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:781-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2007 Oct;7(4):263-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17562090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10 ):e26530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22028897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Aug;56(418):2003-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Dec;65(6):719-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17874224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Feb;10(2):88-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Apr;13(2):132-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Nov 27;456(7221):470-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S165-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Sep;52(9):1583-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21828102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):1099-1111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D361-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Feb 26;32(4):1372-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14988425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Dec;154(4):1697-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20959419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Feb 18;11:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20167110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 May 1;1465(1-2):140-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Oct;6(5):410-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1141-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D284-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Dec;42(12):1060-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21037569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Aug;59(3):387-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19366428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:377-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Oct;37(10):1029-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jan;13(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24256998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2007;428:419-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17875432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2012 Aug 10;504(2):203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22634611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Jiang, Dechun" sort="Jiang, Dechun" uniqKey="Jiang D" first="Dechun" last="Jiang">Dechun Jiang</name>
<name sortKey="Liu, Bingbing" sort="Liu, Bingbing" uniqKey="Liu B" first="Bingbing" last="Liu">Bingbing Liu</name>
<name sortKey="Lu, Jing" sort="Lu, Jing" uniqKey="Lu J" first="Jing" last="Lu">Jing Lu</name>
<name sortKey="Luo, Wenchun" sort="Luo, Wenchun" uniqKey="Luo W" first="Wenchun" last="Luo">Wenchun Luo</name>
<name sortKey="Ma, Tao" sort="Ma, Tao" uniqKey="Ma T" first="Tao" last="Ma">Tao Ma</name>
<name sortKey="Wan, Dongshi" sort="Wan, Dongshi" uniqKey="Wan D" first="Dongshi" last="Wan">Dongshi Wan</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Jian" sort="Zhang, Jian" uniqKey="Zhang J" first="Jian" last="Zhang">Jian Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F91 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F91 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24913126
   |texte=   Transcriptome dynamics of a desert poplar (Populus pruinosa) in response to continuous salinity stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24913126" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020